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Abstract. Starting from the formulation of covariant non-commutative differential calculus 
recently given by Wess and Zumina we construct a deformation of the Virasaro algebra, 
which allow us to identify the variables and differential operators on the quantum plane 
R: to those on the classical plane R'. This correspondence indicates how non-commutative 
geometry can be understood in terms of q-analysis on the commutative plane. We generalize 
this result to the general n-dimensional case and discuss some of its consequence?. 

1. Introduction 

In the past few years the subject of quantum groups and quantum algebras [ l ]  has 
attracted the attention of mathematicians and physicists. Some disciplines in which 
they play an important role include conformal field theories [2]; integrable systems 
[3], statistical models [4] and two-dimensional gravity [SI, all of them having the 
Yang-Baxter algebra [6] as a common ground. 

Another development includes the representation of quantum algebras (or q- 
deformed Lie algebras) in terms of q-analogues of bosonic and fermionic [7], parabose 
and parafermi [8] operators, and the formulation of a differential calculus on the space 
of  a quantum group [9,10]. 

In particular, in this paper our interest resides in the covariant formulation of Wess 
and Zumino and its relation to q-differential analysis. In section 2 we define a 
deformation of the Virasoro algebra in terms of one of the coordinates of the quantum 
plane R:, and based on this in section 3 we identify each first-order differential operator 
on the set of differentiable self-maps of the quantum plane with an infinite order 
differential operator on the set of smooth maps of R'. We show that these differential 
operators can be written as a product of a q-derivative and a scaiing operator, bringing 
therefore the theory of q-analysis to play a corresponding role in commutative geometry. 
We generalize this result to the n > 2 dimensional case and conclude with some remarks. 

Let us denote by i,, i = 1 , .  . . , n, the coordinates of the real quantum n-plane, where 

= qi ; i i  i<j (1) 

is invariant under Gl,(n) transformations and q is a complex number. Recently, a 
covariant formulation has been given [lo] in terms of operators acting linearly on the 
variables ij, and satisfying simple consistency relations with the R-matrix of Gl,(n). 
For further reference, we recall that for n = 2  the relations between variables and 
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derivatives have been shown to be 
A 1  

J , a ,  = q-lJ,J, 

&a = 1 + q%i, f ( q 2 -  l)y^iy 

ixŷ  = qy^$x 

$,a = qai, 
$4 = 1 + q*y^$v 

which are easily seen to yield to commutative calculus for q = 1 

2. Virasoro algebra on R: 

As is well known, the classical Virasoro algebra elements L. have a representation in 
terms of differential operators given by 

L_.=y J y  (7) "+I 

aFd therefore it is suggestive that a q-deformed Virasoro algebra consists of elements 
L, defined as 

in =f(q)y^-"+'i ,  (8) 
such that f ( q  = 1) = 1, and the choice of the variable p is obvious once one compares 
(6) with (3). A simple calculation with the help of relations such as 

gives forf(q)  = q that the in operators satisfy the algebra 
* .  A *  

[L , ,  ~ " 1 ~ n - m  = qn-"L,L, -q"-'L,L, = [m - nl i , , ,  (10) 

where 

It is clear that (10) reduces to the classical Virasoro algebra in the q = 1 limit. In 
particular, the SU(1, l ) ,  realization is given by the set of operators 

io = qyi, i, = qSy i- I = qŷ 2;y (11) 

satisfying 
* *  A " A  e * A  . 

(12) [Lo,  L-Jq-t = L - ,  [L, Lulq-'= [ L , ,  L-l1,-~=[2lL". 

A realization of Witten's deformation [ l l ]  of SU(2) 

[ fo, f,]plo = fl [r1, T ~ ] ~ ~ / ~ =  f-, [f,, ?-,I= f o - ( p 1 ' 2 - p - 1 ' 2 ) f ~  (13 )  
A A  

is written on the quantum plane as follows 

f o-  - _  pl'*yJ,, = ip"2j2iv (14) 
"* f - i  l / 2 *  I - P  J ,  

where the parameter p = q2 
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3. Rt-coordinates as mappings on R' 

In [12] it has been shown that the algebra in (10) can be realized in terms of standard 
differential operators as 

and therefore comparing with (8) we see that the q-deformed Virasoro algebra yields 
to identify 

such that, by identifying the quantum plane coordinate j with the standard variable 
y, we obtain that the q-derivative has a representation on the commutative plane given 
by 

which has the appropriate limit ;y -*ay for q = 1. We can also readily check that (6) 
is satisfied on R2. Notice that once we identify the number operator Nyy" = ny" with 
the differential operator yJy we see that Dq corresponds to the q-differential operator 
of q-analysis [13]. We can easily check that for an arbitrary function +(y) 

and that to the inverse of D,, corresponds the operation 

Inspection of (2), (4) and ( 5 )  tells us that for the coordinate 2 we can write 

?-*f(X, a,, . . .,a:, . . . )qydJ (20) 

gf -q2fg= 1 (21) 

iX -* g(x, a,, . . . ,a;, . . . )p' 
such that together with (3) the functions f and g are required to satisfy 

which is of the same functional type as (6). Therefore, we define 

In particular, for the q-deformation of the quantum mechanical momentum 
operators & and ,6" we have the mappings 
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and, as we can see, if we want to describe a local theory defined on R: through its 
correspondence in the classical plane we are forced to deal with a non-local theory 
on R2.  

A representation of the well known q-deformation of the Lie algebra of SU(2) 

[J3,  JJ=*J+ [J+, J-I=[2JJ (24) 
can be given in terms of the operators D l " - q ~ ' ~ ; ' ( q ~ ' , ~ , - l ) / ( q - q - ' )  by defining 

J_ = q q - N , / 2  ( 2 )  - N d 2  
XID, 4 

J+ = q q - N z / 2 X  D(1) - N , / 2  
2 4 q  

(25) 

The case n = 3 can be similarly work out. From [ 101 we learned that for n = 3 we 

J, = f (  N~ - N ,  ). 

have that 

i,; = 1 + q 2 i ; ,  (28) 
and following the previous procedure we find that the i, y* and f coordinates correspond 
to the following self-maps o f  R3 

from where we can easily generalize to the case of arbitrary n. We should also remark 
that these differential mappings are a representation of the 'p and 'p' operators discussed 
in the last reference in [7]. Basically, one identifiest: 2, -f rp; and i, + p,, i = 1,. . . n. 

inen, the transformations obtained here give us the reiation between diiierentiai 
operators on RI: and those on the classical n-plane, and could be useful to describe 
the dynamics of an n-dimensional system on R: in  terms of commutative geometry. 
!n particular, the identification in (29) indicates that the action of differential operators 
J, on functions in R: corresponds to the action of the differential operator of q-analysis 
times scaling operators on functions in R". Therefore, functions of non-commutative 
variables can be understood in terms of the theory of q-hypergeometric functions and 
q-series. One important implication of this correspondence is that several aspects of 
q-analysis, which were well studied by mathematicians during the first half of this 
century [14], give a new angle to approach non-commutative geometry. 

- 

A A r m . n w I d m m a ~ +  
_\x..."" .="~".F"' 

I wish to thank J Luque for a helpful discussion. 

t I thank C Zachos for pointing this out to me. 
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