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Abstract. Starting from the formulation of covariant non-commutative differential calculus
recently given by Wess and Zumino we construct a deformation of the Virasoro algebra,
which allow us to identify the variables and differential operators on the quantum plane
R? (o those on the classical plane R This correspondence indicates how non-commutative
geometry can be understood in terms of g-analysis on the commutative plane. We generalize
this result to the general n-dimensional case and discuss some of its consequencer.

1. Introduction

In the past few years the subject of quantum groups and quantum algebras [1] has
attracted the attention of mathematicians and physicists. Some disciplines in which
they play an important role include conformai field theories [2], integrable systems
[3], statistical models [4] and two-dimensional gravity [5], all of them having the
Yang-Baxter algebra [6] as a common ground.

Another development includes the representation of quantum algebras (or g-
deformed Lie algebras) in terms of g-analogues of bosonic and fermionic{7], parabose
and parafermi [8] operators, and the formulation of a differential calculus on the space
of a quantum group [9, 10].

In particular, in this paper our interest resides in the covariant formulation of Wess
and Zumino and its relation to g¢-differential analysis. In section 2 we define a
deformation of the Virasoro algebra in terms of one of the coordinates of the quantum
plane Rf,, and based on this in section 3 we identify each first-order differential operator
on the set of differentiable self-maps of the quantum plane with an infinite order
differential operator on the set of smooth maps of R”>. We show that these differential
operators can be written as a product of a g-derivative and a scaling operator, bringing
therefore the theory of g-analysis to play a corresponding role in commutative geometry.
We generalize this result to the n > 2 dimensional case and conclude with some remarks.

Let us denote by X, i =1, ..., n, the coordinates of the real quantum n-plane, where

-fifj=q£:i£i i<y (1)
is invariant under Gl,(n) transformations and g is a complex number. Recently, a
covariant formulation has been given [10] in terms of operators acting linearly on the
variables X;, and satisfying simple consistency relations with the R-matrix of Gl,(n).
For further reference, we recall that for n =2 the relations between variables and
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derivatives have been shown to be

8,3, =473, (2)
3.8 =1+g%5, +(g* - )53, (3)
ERES N (4)
3,%£=q%a, (5)
5,9 =1+473, (6)

which are easily seen to yield to commutative calculus for g =1.

2. Virasoro algebra on R}
As is well known, the classical Virasoro algebra elements L, have a representation in
terms of differential operators given by

L_,=y""a, (7)

and therefore it is suggestive that a g-deformed Virasoro algebra consists of elements
L, defined as

L,=f(g)5"5, (8)

such that f(g=1)=1, and the choice of the variable 7 is obvious once one compares
(6) with {3). A simple calculation with the help of relations such as

N l—qﬂ" N
ayj}in = ﬁin—] > +yAinq12nay (9)
1-¢

gives for f{q)= g that the L, operators satisfy the algebra

[Lo, Llgrm=q" "Ly = q" " Lol =[m—n]L,., (10)
where

qrﬂ*ﬂ _qll*m
[m—n]="——""—
-4

It is clear that (10) reduces to the classical Virasoro algebra in the g =1 limit. In
particular, the SU(1, 1), realization is given by the set of operators

E():qﬁéy £|=q§y Jr:—1=q}?23‘y (11)
satisfying
[Lo, L1,-=L, (L, Lol =L, (L, L 12=[2]L,. (12)
A realization of Witten's deformation [11] of SU(2)
[Ffo, fl]p]ﬂ: f‘l [f‘—ls fo]p'”= ’f‘—l [f’, ’ f—l] = fo"(PUz_P_”z)fg (13)
is written on the quantum plane as follows

T=ip"%, To=—-p'*93, T, =ip"?5%, (14)

where the parameter p = g°.
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3. R}-coordinates as mappings on R’

In [12] it has been shown that the algebra in (10) can be realized in terms of standard
differential operators as

Y g

L.=y -
g-q°

and therefore comparing with (8) we see that the g-deformed Virasoro algebra yields
to identify

(15)

g7 =1

g—q"'

A—n+l

@b e,y

(16)

such that, by identifying the quantum plane coordinate j with the standard variable
y, we obtain that the g-derivative has a representation on the commutative plane given
by

-1, -1 g7 -1

qg—q"

5,»D,=q (17)

which has the appropriate limit §y >4, for g=1. We can also readily check that (6)
is satisfied on R”. Notice that once we identify the number operator N,y" = ny" with
the differential operator yd, we see that D, corresponds to the g-differential operator
of g-analysis [13]. We can easily check that for an arbitrary function ¢{y)

 Dyb(y) =gy HLLGL) (18)

and that to the inverse of D, corresponds the operation

I dyg(y)=—(q°-1)y ZO g> "2 g () + constant
q n=

1
=_(q2“1)y—l-wg(y)+constant. (19)

Inspection of (2), (4} and (5) tells us that for the coordinate £ we can write
L LG T L 17 o 3= g(Xae,...,00 ... )" (20)
such tﬁat together with (3) the functions f and g are required to satisfy
gf-a'fg=1 (21)
which is of the same functional type as (6). Therefore, we define

Zx&x__l
i = f=x (22)
q—4qg

g=q'x”

In particular, for the g-deformation of the quantum mechanical momentum
operators §, and p, we have the mappings

2xa 2y,
- 1 ~1 " p g7 —1

= —ig%, » —igx ' T g By =~igd, > ~iy™' =—— (23)
pe=—iq o . ) PR
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and, as we can see, if we want to describe a local theory defined on R through its
correspondence in the classical plane we are forced to deal with a non- local theory
on R’

A representation of the well known g-deformation of the Lie algebra of SU(2)
(S, Ju]=+J, [J+, J-1=124] (24)
can be given in terms of the operators D{’=q™'x7' (g™ ~1)/(q—q ') by defining
Jo=qq ", D g™N? Jo=qq~ M, DP g™
J; =%(N2'“ Ny).

The case n=3 can be similarly work out. From [10] we learned that for n =3 we
have that

(25)

- -

ax=1+q" %3, +(q* —l)ya +(q* —-1)%3, (26)
éyﬁ= 1+g¢4 y6y+(q —l)zaz 27
3,2 =1+q%%3, (28)

and following the previous procedure we find that the %, § and 7 coordinates correspond
to the following self-maps of R’

Foz éz-—)q'l "q 2_1
q-q"
R : P
V- yg* gy gt —— (29)
q—9
2x8,
£ > xq*’e g™ 9.~ q 'x g g™ g -1

q-q

from where we can easily generalize to the case of arbitrary n. We should also remark
that these differential mappings are a representation of the ¢ and y operators discussed
in the last reference in [7]. Basically, one identifies?: % - ¢} and a s, i=1,.

Then, the transformaiions obtained here give us the reiation between differentiai
operators on R, and those on the classical n-plane, and could be useful to describe
the dynamics of an n-dimensional system on R in terms of commutative geometry.
In particular, the identification in (29) indicates that the action of differential operators
d; on functions in R} corresponds to the action of the differential operator of g-analysis
times scaling operators on functions in R". Therefore, functions of non-commutative
variables can be understood in terms of the theory of g-hypergeometric functions and
g-series. One important implication of this correspondence is that several aspects of
g-analysis, which were well studied by mathematicians during the first half of this
century [14], give a new angle to approach non-commutative geometry.

I wish to thank J Luque for a helpful discussion.

+ 1 thank C Zachos for pointing this out to me.
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