Non-commutative differential calculus and q-analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25169
(http://iopscience.iop.org/0305-4470/25/1/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:26

Please note that terms and conditions apply.

Non-commutative differential calculus and \boldsymbol{q}-analysis

Marcelo R Ubriaco
Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, Río Piedras, PR 00931-3343, USA

Received 26 April 1991

Abstract

Starting from the formulation of covariant non-commutative differential calculus recently given by Wess and Zumino we construct a deformation of the Virasoro algebra, which allow us to identify the variables and differential operators on the quantum plane \boldsymbol{R}_{q}^{2} to those on the classical plane $\boldsymbol{R}^{\mathbf{2}}$. This correspondence indicates how non-commutative geometry can be understood in terms of q-analysis on the commutative plane. We generalize this result to the general n-dimensional case and discuss some of its consequences.

1. Introduction

In the past few years the subject of quantum groups and quantum algebras [1] has attracted the attention of mathematicians and physicists. Some disciplines in which they play an important role include conformal field theories [2], integrable systems' [3], statistical models [4] and two-dimensional gravity [5], all of them having the Yang-Baxter algebra [6] as a common ground.

Another development includes the representation of quantum algebras (or q deformed Lie algebras) in terms of q-analogues of bosonic and fermionic [7], parabose and parafermi [8] operators, and the formulation of a differential calculus on the space of a quantum group [9, 10].

In particular, in this paper our interest resides in the covariant formulation of Wess and Zumino and its relation to q-differential analysis. In section 2 we define a deformation of the Virasoro algebra in terms of one of the coordinates of the quantum plane \boldsymbol{R}_{q}^{2}, and based on this in section 3 we identify each first-order differential operator on the set of differentiable self-maps of the quantum plane with an infinite order differential operator on the set of smooth maps of \boldsymbol{R}^{2}. We show that these differential operators can be written as a product of a q-derivative and a scaling operator, bringing therefore the theory of q-analysis to play a corresponding role in commutative geometry. We generalize this result to the $n>2$ dimensional case and conclude with some remarks.

Let us denote by $\hat{x}_{i}, i=1, \ldots, n$, the coordinates of the real quantum n-plane, where

$$
\begin{equation*}
\hat{x}_{i} \hat{x}_{j}=q \hat{x}_{j} \hat{x}_{i} \quad i<j \tag{1}
\end{equation*}
$$

is invariant under $\mathrm{Gl}_{q}(n)$ transformations and q is a complex number. Recently, a covariant formulation has been given [10] in terms of operators acting linearly on the variables \hat{x}_{i}, and satisfying simple consistency relations with the R-matrix of $\mathrm{Gl}_{q}(n)$. For further reference, we recall that for $n=2$ the relations between variables and
derivatives have been shown to be

$$
\begin{align*}
& \hat{\partial}_{x} \hat{\partial}_{y}=q^{-1} \hat{\partial}_{y} \hat{\partial}_{x} \tag{2}\\
& \hat{\partial}_{x} \hat{x}=1+q^{2} \hat{x} \hat{\partial}_{x}+\left(q^{2}-1\right) \hat{y} \hat{\partial}_{y} \tag{3}\\
& \hat{\partial}_{x} \hat{y}=q \hat{y} \hat{\partial}_{x} \tag{4}\\
& \hat{\partial}_{y} \hat{x}=q \hat{x} \hat{\partial}_{y} \tag{5}\\
& \hat{\partial}_{y} \hat{y}=1+q^{2} \hat{y} \hat{\partial}_{y} \tag{6}
\end{align*}
$$

which are easily seen to yield to commutative calculus for $q=1$.

2. Virasoro algebra on $\boldsymbol{R}_{q}^{\mathbf{2}}$

As is well known, the classical Virasoro algebra elements L_{n} have a representation in terms of differential operators given by

$$
\begin{equation*}
L_{-n}=y^{n+1} \partial_{y} \tag{7}
\end{equation*}
$$

and therefore it is suggestive that a q-deformed Virasoro algebra consists of elements \hat{L}_{n} defined as

$$
\begin{equation*}
\hat{L}_{n}=f(q) \hat{y}^{-n+1} \hat{\partial}_{y} \tag{8}
\end{equation*}
$$

such that $f(q=1)=1$, and the choice of the variable \hat{y} is obvious once one compares (6) with (3). A simple calculation with the help of relations such as

$$
\begin{equation*}
\hat{\partial}_{y} \hat{y}^{ \pm n}=\hat{y}^{ \pm n-1} \frac{1-q^{ \pm 2 n}}{1-q^{2}}+\hat{y}^{ \pm n} q^{ \pm 2 n} \hat{\partial}_{y} \tag{9}
\end{equation*}
$$

gives for $f(q)=q$ that the \hat{L}_{n} operators satisfy the algebra

$$
\begin{equation*}
\left[\hat{L}_{m}, \hat{L}_{n}\right]_{q^{n-m}} \equiv q^{n-m} \hat{L}_{m} \hat{L}_{n}-q^{m-n} \hat{L}_{n} \hat{L}_{m}=[m-n] \hat{L}_{m+n} \tag{10}
\end{equation*}
$$

where

$$
[m-n]=\frac{q^{m-n}-q^{n-m}}{q-q^{-1}}
$$

It is clear that (10) reduces to the classical Virasoro algebra in the $q=1$ limit. In particular, the $\mathrm{SU}(1,1)_{q}$ realization is given by the set of operators

$$
\begin{equation*}
\hat{L}_{0}=q \hat{y}_{y} \quad \hat{L}_{1}=q \hat{\partial}_{y} \quad \hat{L}_{-1}=q \hat{y}^{2} \hat{\partial}_{y} \tag{11}
\end{equation*}
$$

satisfying
$\left[\hat{L}_{0}, \hat{L}_{-1}\right]_{q^{-1}}=\hat{L}_{-1} \quad\left[\hat{L}_{1}, \hat{L}_{0}\right]_{q^{-1}}=\hat{L}_{1} \quad\left[\hat{L}_{1}, \hat{L}_{-1}\right]_{q^{-2}}=[2] \hat{L}_{0}$.
A realization of Witten's deformation [11] of $\mathrm{SU}(2)$
$\left[\hat{T}_{0}, \hat{T}_{1}\right]_{p^{1 / 2}}=\hat{T}_{1}$
$\left[\hat{T}_{-1}, \hat{T}_{0}\right]_{p^{1 / 2}}=\hat{T}_{-1}$
$\left[\hat{T}_{1}, \hat{T}_{-1}\right]=\hat{T}_{0}-\left(p^{1 / 2}-p^{-1 / 2}\right) \hat{T}_{0}^{2}$
is written on the quantum plane as follows

$$
\begin{equation*}
\hat{T}_{1}=\mathrm{i} p^{1 / 2} \hat{\partial}_{y} \quad \hat{T}_{0}=-p^{1 / 2} \hat{y}_{y} \quad \hat{T}_{-1}=\mathrm{i} p^{1 / 2} \hat{y}^{2} \hat{\partial}_{y} \tag{14}
\end{equation*}
$$

where the parameter $p=q^{2}$.

3. $\boldsymbol{R}_{q}^{\mathbf{2}}$-coordinates as mappings on $\boldsymbol{R}^{\mathbf{2}}$

In [12] it has been shown that the algebra in (10) can be realized in terms of standard differential operators as

$$
\begin{equation*}
\hat{L}_{n}=y^{-n} \frac{q^{2 y \partial_{y}}-1}{q-q^{-1}} \tag{15}
\end{equation*}
$$

and therefore comparing with (8) we see that the q-deformed Virasoro algebra yields to identify

$$
\begin{equation*}
q \hat{y}^{-n+1} \hat{\partial}_{y} \rightarrow y^{-n} \frac{q^{2 y \partial_{y}}-1}{q-q^{-1}} \tag{16}
\end{equation*}
$$

such that, by identifying the quantum plane coordinate \hat{y} with the standard variable y, we obtain that the q-derivative has a representation on the commutative plane given by

$$
\begin{equation*}
\hat{\partial}_{y} \rightarrow D_{q} \equiv q^{-1} y^{-1} \frac{q^{2 y \partial_{y}}-1}{q-q^{-1}} \tag{17}
\end{equation*}
$$

which has the appropriate limit $\hat{\partial}_{y} \rightarrow \partial_{y}$ for $q=1$. We can also readily check that (6) is satisfied on \boldsymbol{R}^{2}. Notice that once we identify the number operator $N_{y} y^{n}=n y^{n}$ with the differential operator $y \partial_{y}$ we see that D_{q} corresponds to the q-differential operator of q-analysis [13]. We can easily check that for an arbitrary function $\phi(y)$

$$
\begin{equation*}
D_{q} \phi(y)=q^{-1} y^{-1} \frac{\phi\left(q^{2} y\right)-\phi(y)}{q-q^{-1}} \tag{18}
\end{equation*}
$$

and that to the inverse of D_{q} corresponds the operation

$$
\begin{align*}
\int_{q} \mathrm{~d} y g(y) & =-\left(q^{2}-1\right) y \sum_{n=0}^{\infty} q^{2 n\left(1+y \partial_{y}\right)} g(y)+\text { constant } \\
& =-\left(q^{2}-1\right) y \frac{1}{1-q^{2\left(1+y \partial_{r}\right)}} g(y)+\text { constant. } \tag{19}
\end{align*}
$$

Inspection of (2), (4) and (5) tells us that for the coordinate \hat{x} we can write

$$
\begin{equation*}
\hat{x} \rightarrow f\left(x, \partial_{x}, \ldots, \partial_{x}^{n}, \ldots\right) q^{y \partial_{y}} \quad \hat{\partial}_{x} \rightarrow g\left(x, \partial_{x}, \ldots, \partial_{x}^{n}, \ldots\right) q^{y \partial_{y}} \tag{20}
\end{equation*}
$$

such that together with (3) the functions f and g are required to satisfy

$$
\begin{equation*}
g f-q^{2} f g=1 \tag{21}
\end{equation*}
$$

which is of the same functional type as (6). Therefore, we define

$$
\begin{equation*}
g \equiv q^{-1} x^{-1} \frac{q^{2 x \partial_{x}}-1}{q-q^{-1}} \quad f \equiv x \tag{22}
\end{equation*}
$$

In particular, for the q-deformation of the quantum mechanical momentum operators \hat{p}_{x} and \hat{p}_{y} we have the mappings
$\hat{p}_{x}=-\mathrm{i} q^{2} \hat{\partial}_{x} \rightarrow-\mathrm{i} q x^{-1} \frac{q^{2 x \partial_{x}}-1}{q-q^{-1}} q^{y \partial_{y}} \quad \hat{p}_{y}=-\mathrm{i} q \hat{\partial}_{y} \rightarrow-\mathrm{i} y^{-1} \frac{q^{2 y \partial_{y}}-1}{q-q^{-1}}$
and, as we can see, if we want to describe a local theory defined on \boldsymbol{R}_{q}^{2} through its correspondence in the classical plane we are forced to deal with a non-local theory on \boldsymbol{R}^{2}.

A representation of the well known q-deformation of the Lie algebra of $\operatorname{SU}(2)$

$$
\begin{equation*}
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{3}\right] \tag{24}
\end{equation*}
$$

can be given in terms of the operators $D_{q}^{(i)} \equiv q^{-1} x_{i}^{-1}\left(q^{2 x_{i} \partial_{i}}-1\right) /\left(q-q^{-1}\right)$ by defining

$$
\begin{array}{ll}
J_{+}=q q^{-N_{2} / 2} x_{2} D_{q}^{(1)} q^{-N_{1} / 2} & J_{-}=q q^{-N_{1} / 2} x_{1} D_{q}^{(2)} q^{-N_{2} / 2} \\
J_{3}=\frac{1}{2}\left(N_{2}-N_{1}\right) . \tag{25}
\end{array}
$$

The case $n=3$ can be similarly work out. From [10] we learned that for $n=3$ we have that

$$
\begin{align*}
& \hat{\partial}_{x} \hat{x}=1+q^{2} \hat{x} \hat{\partial}_{x}+\left(q^{2}-1\right) \hat{y} \hat{\partial}_{y}+\left(q^{2}-1\right) \hat{\hat{z}} \hat{\partial}_{z} \tag{26}\\
& \hat{\partial}_{y} \hat{y}=1+q^{2} \hat{y} \hat{\partial}_{y}+\left(q^{2}-1\right) \hat{z} \hat{\partial}_{z} \tag{27}\\
& \hat{\partial}_{z} \hat{z}=1+q^{2} \hat{z} \hat{\partial}_{z} \tag{28}
\end{align*}
$$

and following the previous procedure we find that the \hat{x}, \hat{y} and \hat{z} coordinates correspond to the following self-maps of \boldsymbol{R}^{3}

$$
\begin{align*}
& \hat{z} \rightarrow z \quad \hat{\partial}_{z} \rightarrow q^{-1} z^{-1} \frac{q^{2 z \partial_{z}}-1}{q-q^{-1}} \\
& \hat{y} \rightarrow y q^{z \partial_{z}} \quad \hat{\partial}_{y} \rightarrow q^{-1} y^{-1} q^{z \partial_{z}} \frac{q^{2 y \partial_{y}-1}}{q-q^{-1}} \tag{29}\\
& \hat{x} \rightarrow x q^{y \partial_{y}} q^{z \partial_{z}} \quad \hat{\partial}_{x} \rightarrow q^{-1} x^{-1} q^{y \partial_{y}} q^{z \partial_{z}} \frac{q^{2 x \partial_{x}}-1}{q-q^{-1}}
\end{align*}
$$

from where we can easily generalize to the case of arbitrary n. We should also remark that these differential mappings are a representation of the φ and φ^{\dagger} operators discussed in the last reference in [7]. Basically, one identifies $\dagger: \hat{x}_{i} \rightarrow \varphi_{i}^{\dagger}$ and $\hat{\partial}_{i} \rightarrow \varphi_{i}, i=1, \ldots n$.

Then, the transformations obtained here give us the relation between differential operators on \boldsymbol{R}_{q}^{n} and those on the classical n-plane, and could be useful to describe the dynamics of an n-dimensional system on \boldsymbol{R}_{q}^{n} in terms of commutative geometry. In particular, the identification in (29) indicates that the action of differential operators $\hat{\partial}_{i}$ on functions in \boldsymbol{R}_{q}^{n} corresponds to the action of the differential operator of q-analysis times scaling operators on functions in $\boldsymbol{R}^{\boldsymbol{n}}$. Therefore, functions of non-commutative variables can be understood in terms of the theory of q-hypergeometric functions and q-series. One important implication of this correspondence is that several aspects of q-analysis, which were well studied by mathematicians during the first half of this century [14], give a new angle to approach non-commutative geometry.

Acknowledgment

I wish to thank J Luque for a helpful discussion.

References

[1] Fadeev L D, Reshetikhin N and Takhtajan L A 1987 Quantization of Lie Groups and Lie Algebras reprinted 1989 in Yang-Baxter equation in integrable systems ed M Jimbo (Singapore: World Scientific)
Drinfeld V 1986 Proc. ICM Berkeley vol 1 (New York: Academic)
Kulish P and Reshetikhin N 1983 J. Sov. Math. 232435
Jimbo M 1985 Lett. Math. Phys. 1063
Manin Yu I 1988 Quantum Groups and Non-commutative Geometry CRM preprint Montreal University Corrigan E, Fairlie D B and Fletcher P 1990 J. Math. Phys. 31776
Sudbery A 1990 Non-commuting coordinates and Differential Operators Preprint University of York
[2] Alvarez-Gaumé L, Gomez C and Sierra G 1989 Phys. Lett. 220B 142; 1989 Nucl. Phys. B 319155
Bernard D and Le Clair A 1989 Phys. Lett. 227B 417
[3] Takhtajan L A 1989 Adv. Stud. Pure Math. 19
de Vega H 1989 Int. J. Mod. Phys. A 42371
[4] Pasquier V and Saleur H 1990 Nucl. Phys. B 330523
[5] Gervais J-L 1990 Commun. Math. Phys. 130257
[6] Wadati M, Deguchi T and Akutsu Y 1989 Phys. Rep. 180247
[7] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
McFarlane A J 1989 J. Phys. A: Math. Gen. 224581
Ng Y J 1990 J. Phys. A: Math. Gen. 231023
Floreanini R, Spiridonov V P and Vinet L 1990 Phys. Lett. 242B 383
Chaichian M, Kulish P and Lukierski J 1990 Phys. Lett. 237B 401
Kulish P and Damaskinski E V 1989 J. Phys. A: Math. Gen. 23 L415
[8] Floreanini R and Vinet L 1990 J. Phys. A: Math. Gen. 23 L1019
[9] Woronowicz S L 1987 Publ. RIMS 23117
[10] Wess J and Zumino B 1990 Covariant Differential Calculus on the Quantum Hyperplane CERN preprint CERN-TH-5697/90
[11] Witten E 1990 Nucl. Phys. B 330285
[12] Curtright T L and Zachos C K 1990 Phys. Lett. 243B 237
[13] Cigler J 1979 Monat. Math. 8887
[14] Goldman J and Rota G-C 1970 Studies in Appl. Math. 49239

